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Abstract— Robotic manipulation of highly deformable ma-
terials is inherently challenging due to the need to maintain
tension and the high dimensionality of the state of the material.
Past work in this area mostly focuses on generating a detailed
model for the material and its interaction with the robot, then
using the model to construct a motion plan. In this paper, we
take a different approach by using only sensor feedback to
dictate the robot motion.

We consider the collaborative manipulation of a deformable
sheet between a person and a dual-armed robot (Baxter by
Rethink Robotics). The robot is capable of contact sensing
via joint torque sensors and is equipped with a head-mounted
RGBd sensor. The robot senses contact force to maintain tension
of the sheet, and in turn comply to the human motion. This is
akin to handling a tablecloth with a partner but with one’s eyes
closed. To improve the response, we use the RGBd sensor to
detect folds, and command the robot to move in an orthogonal
direction to smooth them out. This is like handling cloth by
looking at the cloth itself. Both controllers are able to follow
human motion without excessive crimps in the sheet, but as
expected, the hybrid controller combining force and vision
outperforms the force controller alone in terms of tension
force transient. The ability to quickly detect the state of the
deformable material also enables more complex manipulation
strategies in the future.

I. INTRODUCTION

The development of “human friendly robots” such as the
Baxter from Rethink Robotics and the UR5/UR10 from Uni-
versal Robotics has stimulated research interest in problems
that involve humans and robots in the same workspace.
Human-robot collaboration includes diverse research, from
anticipating a human’s intention in a shared workspace, to
generating human-friendly trajectories that are intuitive for
a person to predict, to actually incorporating the human into
the control loop. In this paper, we specifically address the
problem of collaborative object manipulation, in which both
a robot and a human are capable of affecting the state of
the system. In particular, we address the problem of cloth
manipulation, in which the human and robot grasp opposite
ends of a piece of fabric, and the control objective for the
robot is to keep the fabric taut while complying to the
motions of the human operator.

Transporting large deformable materials is needed in cer-
tain manufacturing environments, for example those involv-
ing clothing or leather goods. Composites manufacturing also
requires careful handling of resin-laden carbon fiber sheets
to press over a mold layer by layer. In addition, several
household tasks require deformable material handling such as
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laying a sheet on a bed or a tablecloth on a table. Currently,
such tasks are all performed by human workers due to the
need to maintain the appropriate amount of tension force
(high enough to avoid sagging or wrinkles and low enough
to avoid tearing).

Collaborative robot-robot or human-robot manipulation of
a rigid body has long been studied by using various forms
of hybrid position/force control. However, when the material
is deformable, standard control strategies no longer apply
since the force propagation in the material is far more
complex. This paper addresses this more difficult problem
with a combination of force-feedback control, which is most
effective in ensuring compliance when the fabric is taut,
and vision-feedback control, which is most effective in re-
establishing tautness when the fabric is slack. In particular,
we propose a novel approach for estimating the control
directive for slack fabric based on the analysis of wrinkles
in a color/depth image.

The control problem formulation is presented in Section
II. Section III reviews related work in this area. Section IV
presents the main contributions of the paper: the derivation
of a hybrid control law using force- and vision-feedback for
cloth manipulation and a model-free method for detecting
the cloth state. We compare implementation results for both
force-feedback and hybrid control laws in Section V.

II. SYSTEM SETUP

We define our task as consisting of two agents, one con-
trollable (robot) and one uncontrollable (human), coupled to
a highly deformable two-dimensional object akin to cloth or
other fabrics. The controllable agent’s goal is to minimize the
amount of deformations or wrinkles imparted in the object
from the uncontrollable agent, by either moving to comply
with the uncontrollable agent’s motion or by applying tension
to maintain a taut state.

Throughout our development, we used the dual-armed
Baxter robot, which has two seven degree-of-freedom arms,
sensing capabilities for both the displacement and torque at
each joint, and a suite of additional sensors. We augmented
the Baxter robot by mounting an RGBd sensor (Microsoft
Kinect) on its face screen to provide three-dimensional
information about the scene.

Using these sensors, we gather information about the state
of the system, as shown in Figure 1. Note that we do not
have force sensors at the wrist, as is common, but instead
we estimate the spatial force applied at the end effector from
the measured joint torques:

τ = J(q)>fext, (1)
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Fig. 1. The configuration for human-robot collaborative manipulation. The
robot detects forces via torque sensors and maps them to end effector forces
coming from the object. The Microsoft Kinect visually estimates the state
of the deformable material.

where fext = [τext, Fext]
> is the spatial force applied to the

end effector, J(q) is the Jacobian relating joint velocities to
end effector twist, and q is the vector of current joint angles.

We use this estimated force to follow the commanded
forces of a human operator; however, since we are working
with flexible materials, there is no guarantee that forces from
the human will reflect through the material to affect the joint
torques. In fact, when the material is in a “slack” state, the
system is degenerate, and the person’s motion will not reflect
a detectable force through the cloth.

When in a slack state, visual feedback is necessary to
interpret deformations in the cloth and determine the cor-
responding corrective movements to fully stretch the cloth
back into a “taut” state. Here, we use an RGBd sensor, the
Microsoft Kinect, for this task. We propose that instead of a
full model approximation of the object state, we can instead
detect deformations of the cloth from a direct sampling of
points on its surface.

III. RELATED WORK
Substantial research has focused on forming representative

models for flexible materials. Cloth and fabrics have received
particular attention [2], [7], [9], [10], [14] due to their natural
connections to everyday household life, but the manipulation
of flexible materials extends to other fields, including indus-
trial [3], [8] and biomedical [6] applications.

In all of these works, there was consensus that in order to
manipulate deformable objects, at least two distinct grasping
points are necessary, thus motivating our use of dual-armed
robots. For a recent survey on dual-armed manipulation, we
refer to [11].

Models for flexible materials typically consist of a mesh
parameterized by a set of 3D vertices and edges; however,
the high dimensionality of this representation can lead to
algorithms with significant computational overhead. Minimal
representations were proposed by Salzmann et al. [9], in
which the cloth state is represented as a combination of
learned deformation modes. However, the standard method
for simulating deformable objects is with physics-based
models, as in [3], [10].

Recent research has investigated the automated manipula-
tion of flexible materials. Bodenhagen et al. [3] successfully
performed peg-in-hole and laying down tasks with small

elastic parts. Berenson [1] developed a heuristic-based con-
trol law in simulation that does not need an explicit model
for deformable objects in tasks such as folding or wrapping
around a rigid surface. The automated folding of laundry
was presented in several unique papers [2], [5], [7]; however
their manipulation processes used pre-planned motions based
solely on geometric interpretation of the clothing.

Collaborative manipulation tasks between robots and hu-
mans have also received more interest with the recent intro-
duction of commercial “safe” robots. Thobbi et al. [13] and
Stuckler et al. [12] independently demonstrated the ability to
jointly lift and move rigid objects of significant size relative
to the robot; however, no work has been presented with
deformable objects.

Though there is increasing interest in dual-arm manipula-
tion of highly deformable materials, no purely sensor-based
manipulation strategy has yet been proposed.

IV. CONTROL LAW
We propose a hybrid controller comprised of two com-

plementary pieces: one that uses force feedback and one
that uses visual feedback. We designed velocity-input control
schemes to meet the two primary objectives of 1) complying
to human commands and 2) keeping the material free of
significant deformations (i.e., taut).

A. Force-Feedback Controller

The Baxter robot is built using series elastic actuators
that can sense the torque being applied by the motor via
a spring connected directly to the actuator. Using (1), we
can estimate the external force by solving for the inverse of
this mapping. Baxter has two 7-dof redundant arms. If the
arm is non-singular (i.e., the Jacobian matrix is full rank),
we may estimate the applied force by

fext =
(
J>
)†
fdz (τ − g(q)) , (2)

where g(q) is the estimated gravity compensation torques for
the joint configuration q, and

(
J>
)†

is the Moore-Penrose
pseudo-inverse of J>. The function fdz(·) is a deadband,
added to counter the effect of measurement noise.

With this estimation for the external forces applied to the
system, we map these measured forces into velocities for
the controller with a generalized damper control scheme. We
apply a tension between the two grippers to keep the cloth
edge taut. Using forward kinematics, we know the location
of the two end effector locations pOL, pOR in world space.
Thus, the normal vector between the two is hLR = (pOR −
pOL)/(‖pOR − pOL‖).

We can reduce this tension control to a one-dimensional
problem by projecting the measured forces onto this vector,
as ηL = −h>LRFL, ηR = h>LRFR. The measured force then
maps into desired velocities for each end effector based on
error from a desired tension ηd:

v = −D−1(ηd − η)h, (3)

where DLR is a damping constant, and h is the normal vector
onto which F was projected.
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We define a nonlinear term ζ(η), as described in [4], for
addressing contact constraints:

ζ(η) =


1 η < 0
η1−(1−ζf )η

η1
0 ≤ η < η1

ζf η ≥ η1
, (4)

where η1 > 0 is a constant bias to ensure ζ(η) is a continuous
function and ζf ∈ [0, 1] is the desired scaling constant when
η exceeds η1.

We use (4) to adjust (3) for each end effector as

vL = −ζ(ηd − ηL)D−1LR(ηd − ηL)hLR,

vR = ζ(ηd − ηR)D−1LR(ηd − ηR)hLR.
(5)

Qualitatively, by introducing the ζ(η) term into the control
law, the damping constant is increased when the tension force
exceeds the desired value, causing a relatively slow decay
back to equilibrium. This gives an implicit bias towards
keeping the system in tension between the robot’s grippers.

We extend this control into three dimensions by defining
a coordinate system at each end effector as
HL =

[
−hLR hin −h⊥

]
, HR =

[
hLR hin h⊥

]
, (6)

where hin, h⊥ are orthogonal vectors to hLR with hin
pointing towards the body of the robot.

We can therefore extend (5) using (6) as
vE = −HED

−1 (H>EFE − ηd) , E ∈ {L,R} (7)

where D = diag
(
ζDLR, Din, D

⊥) contains the damping
coefficients for each tension direction, and ηd is a vector
of desired tension forces.

The joint velocities to drive the robot to a particular
linear velocity are calculated using the Jacobian damped-
least-squares controller

q̇ = J(q)>
(
J(q)J(q)> + βI

)−1
v, (8)

where J(q) is the 6 × 7 Jacobian matrix for a single arm,
and β is a small damping constant to avoid ill-conditioning
in singularity configurations.

We include smooth joint-space force fields Ψq(q) to avoid
joint limits in the arms as a secondary control objective. We
want this compensation to map into the null space of J , so
as not to affect the end effector motion, so we adjust (8) with

q̇ = J>
(
JJ> + βI

)−1
(v − JΨq(q)) + Ψq(q). (9)

In this way, we have robustness near joint limits using the
arm redundancy to push into a safer pose without affecting
our task-level control law.

B. Vision-Feedback Controller

We propose a fast method for estimating a corrective vec-
tor for slack cloth states based on observation of its wrinkles
from the color-depth information provided by a Microsoft
Kinect mounted on the face screen of the Baxter (Figure
2). We note that unlike many state-of-the-art techniques for
cloth state estimation, no finite-element model for the cloth
is required.

Fig. 2. Microsoft Kinect mounted on Baxter’s facescreen.

Figure 3 illustrates the pipeline for processing the regis-
tered color-depth data from the Kinect. First, the cloth fore-
ground is extracted from the background. We simply consider
the depth image and remove edges between pixels that have
significant depth discontinuities, followed by morphological
open and fill operations on the binary image to remove
spurious pixels (Figure 3b). Next, we color the foreground
pixels using the registered RGB image, as shown in Figure
3c, and remove any pixels dissimilar from the determined
cloth color (Figure 3d).

We collect the remaining points into a set P ∈ R3, where
every point pi ∈ P projects to a pixel (ui, vi) in the RGB
image I based on the perspective projection model.

We next estimate the normal vector for each point pi based
on its local neighborhood N (pi) ∈ P . We remove any points
in P without a fully populated neighborhood to prevent bias
from missing points (shown in Figure 3e). We collect second
order information on N (pi) into the 3× 3 matrix

M =
∑

pj∈N (pi)

(pj − pi)(pj − pi)>. (10)

The normal hi, is the unit eigenvector associated with
the smallest eigenvalue of M , with sign chosen to have a
negative dot product with the optical axis of the Kinect.
After processing each each point pi ∈ P , we get a set of
corresponding normal vectors hi ∈ H.

We define the desired orientation for the cloth as a unit
vector hd, in this case the upward direction. Any normals
that deviate from hd by a sufficient degree are considered
as candidate directions for correction. Thus we define our
candidate set as Hc =

{
hi ∈ H |h>i hd < δ

}
, where δ is a

user-set threshold.
We estimate the corrective direction ĥc as the mode of the

candidate set Hc in spherical coordinates. As illustrated in
Figure 4, this simple approach serves quite well to indicate
the direction the cloth should be moved, in both tense and
slack situations.

Finally, we define the vision-based task-space velocity
control law for both arms as

vC =
|Hc|
|H|

vCmaxĥ
c, (11)

where |·| represents the cardinality of the set, and vCmax is the
maximum velocity at which the vision-feedback controller
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(a) Original Depth Image. (b) Segment out foreground. (c) Colored points.

(d) Segment by color. (e) Points with full neighborhoods. (f) Points that contribute to correction.

Fig. 3. The graphics pipeline for processing the RGBd data. The depth data in (a) is projected into 3D, and the background pixels are removed (b). We
segment the colored points in (c) by the most prominent color to get (d). The points we actually compute surface estimations for are shown in (e), and (f)
shows the points that contribute to estimating a corrective term.

(a) t=1.895s. (b) t=6.7952s. (c) t=12.0455s. (d) t=23.246s.

Fig. 4. Selected frames from running the visual controller with a human operator. Visually estimated regions of deformation are labeled in blue, while
the estimated correction vector to move the cloth (projected onto the image plane) is illustrated in red.

can operate. This controller then maps the task-space control
law into joint velocities for both arms via (9).

While this control law is based on a heuristic, we argue
that this process does drive the end effectors to position the
grasped edge of the cloth towards the desired state. We can
estimate the surface deformations in terms of curvature at
each point, which fits nicely with our desired planar state for
the cloth. If any point has a curvature |κ| > 0, by definition
this means that there is a change in the normal direction in
that area. The principal directions for these curvatures closely
relate to the internal forces applied at that position. We
observed that the first principal direction is associated with
compression, causing either buckling or drooping effects and
the normals for a curve along this principal direction will
point in the direction for the corrective term ĥc for significant
κ. By sampling these normals, we do not have to worry about
the scale at which to estimate the curvature at each point, and
can allows us to consider cases of both large deformation,
as in Figure 4a, and local deformation, as in Figure 4b.

C. Hybrid Force-Vision Controller

The hybrid controller simply combines the task velocity
terms from (7) and (11) into our full hybrid task-space
control law

vE = −HED
−1 (H>EFE − ηd)+

|Hc|
|H|

vCmaxĥ
c, (12)

where E ∈ {L,R}. The desired end effector velocities then
map into joint velocities using (9).

The force-feedback control law can work on its own as
a compliant controller, but there are inherent drawbacks to
using force alone. As discussed earlier, since forces are only
reflected during tension, there is a measured force of 0 when
the cloth is slack. This means that force sensing alone cannot
determine motion from the operator while in a slack state.
Additionally, for maintaining tension between the two agents,
there is a tradeoff between responsiveness and effort for the
controller. From (3), while the fabric is slack, the maximum
velocity that the end effector is commanded to move is |v| =
1
Dη

d. Thus, for a desired D, the maximum velocity is tuned
by ηd. This means that for small ηd, the robot can respond to
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lower forces when in tension, but will move respond slowly
while slack. For high ηd, the robot will correct for slack
more quickly, but will impart more tension force and require
more effort from the person.

The vision-feedback controller also has drawbacks; how-
ever, they are complementary to those of the force-feedback
controller. Notably, there is an inability to detect “outward”
desired motion. When the human is pulling backwards on a
taut sheet, the robot should comply and move “out” towards
the person, but since we set the desired normal to the cloth
hd as upward, the sensor would only observe a fully taut
sheet without any surface deformations and (11) would be
0. Thus, this controller is only able to supplement the force-
feedback controller, not stand on its own.

V. RESULTS

Each controller was implemented in MATLAB on sep-
arate computers running Windows with i7 processors. The
scripts for each controller were communicated via the Robot
Raconteur [15] middleware to the Robot Operating System
(ROS) controller onboard the Baxter. Robot Raconteur is
a middleware package similar to ROS, with support for
Windows operating systems and the MATLAB language.
The force-feedback controller sends commands at ∼50 Hz,
while the vision-feedback controller is significantly slower at
∼3 Hz. In our experiments, we compared the performance
between the force-feedback controller alone and the hybrid
controller.

Even though this control scheme was designed for collab-
orative manipulation between a human and robot, we first
present results using another Baxter running in open-loop as
the operator. During experimentation, we set our ηd = 3N
for the desired tension between the grippers, as well as the
tension between the two robots. Our test motions for the
operator robot were generated to move both grippers in a
sinusoidal path at 0.1 Hz.

We tested the response from inward/outward motions; the
positions and force results are shown in Figure 5. In Figures
5a and 5b we see that there were only significant measured
forces generated by pulling motions from the operator robot.
Thus, as seen in Figure 5c, while the pure force controller
tracks well when there is a measured force, in degenerate
regions the end effectors can only move at a linear rate.
The hybrid controller shown in Figure 5d has a much better
tracking response in both directions, taking advantage of both
controllers’ strong points.

We also tested the response to side-to-side motions, with
the results shown in Figure 6. We see from the force data
in Figures 6a and 6b that only one arm is receiving an
external force at a time. This makes sense since, during side-
to-side motions, the cloth undergoes a shear deformation.
In this condition, the dominant force comes from pulling
along the elongated diagonal. The position tracking, shown
in Figure 6c, is poor during both control strategies, but shows
improvement with the hybrid controller, as seen in Figure 6d.
We attribute this muted improvement to the very little visual
deformation of the sheet with respect to an upright pose.

(a) Force-Feedback Force Response.

(b) Hybrid Force Response.

(c) Force-Feedback Position Response.

(d) Hybrid Position Response.

Fig. 5. The response for the compliant robot when the operator robot is
making an inwards/outwards sinusoidal motion. Shown are both the left (L)
and right (R) end effectors and the response from purely force control (F)
and from the hybrid controller (H).

Finally, we test the system using a human operator. Figure
4 illustrates several keyframes from this experiment. We
observed similar behavior as with the controlled tests, and
we refer the reader to the accompanying video for the full
presentation of this test.

VI. DISCUSSION AND FUTURE WORK

We presented a hybrid controller combining both force
and vision data for a dual-armed robot to collaboratively
manipulate cloth with a human. We showed that while a
force-feedback controller is able to accomplish this task,
the response is generally poor. The deficiencies of the force
control come from degenerate states of the cloth when the
material is slack; however, vision control performs very well
in these regions, making the two controllers complement
each other effectively. As a second contribution, we present a
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(a) Force-Feedback Force Response.

(b) Hybrid Force Response.

(c) Force-Feedback Position Response.

(d) Hybrid Position Response.

Fig. 6. The response for the compliant robot when the operator robot is
making side-to-side sinusoidal motion. Shown are both the left (L) and right
(R) end effectors and the response from purely force control (F) and from
the hybrid controller (H).

method to directly estimate local cloth states without a model
for the cloth dimensions or its physical properties. We view
this as a initial step towards more sophisticated future work
in collaborative cloth manipulation.

The current vision-feedback controller estimates an ap-
propriate corrective term for both arms as a vector perpen-
dicular to the dominant deformation detected on the cloth
surface. However, this is a heuristic control guideline and
in the future, we are interested in a formal method to
quantify the deviation from tautness of the cloth based on
its surface geometry to drive an optimal correction step for
each individual gripper. For example, our current vision-
feedback controller would not correct the case when the
robot’s end effectors are too close, causing a symmetric
droop with the cloth having two dominant normals pointing

in opposite directions. In this case, the robot’s hands would
each need separate commands to spread apart. Future work
will focus on modeling the relationship between end effector
motion and the state change in local regions in the material.
Additionally, our vision controller only detects a change in
the system by observing the state of the cloth. We plan to
extend this approach by predicting future states based on
observations of the human motion.
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[6] U. Meier, O. López, C. Monserrat, M. C. Juan, and M. Alcañiz. Real-
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